The NetLogger Toolkit

Brian L. Tierney
Dan Gunter

Data Intensive Distributed Computing Group
Lawrence Berkeley National Laboratory

NetLogger

.

Overview

e The Problem
— When building distributed systems, we often
observe unexpectedly low performance
« the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
« the applications
 the operating systems

« the disks or network adapters on either the sending or
receiving host

* the network switches and routers, and so on

* The Solution:

» Highly instrumented systems with precision timing
information and analysis tools

NetLogger

Bottleneck Analysis coee) u‘il

* Distributed system users and developers often
assume the problem is network congestion

— This is often not true

* In our experience tuning distributed applications,
performance problems are due to:

— network problems: ~40%
— host problems: ~20%
— application design problems/bugs: ~40%
* 50% client , 50% server
» Therefore it is equally important to instrument the
applications

NetLogger

NetLogger Toolkit reen) u‘il

* We have developed the NetLogger Toolkit (short for

Networked Application Logger), which includes:

— tools to make it easy for distributed applications to log
interesting events at every critical point

— tools for host and network monitoring

* The approach is novel in that it combines network, host,
and application-level monitoring to provide a complete
view of the entire system.

* This has proven invaluable for:
— isolating and correcting performance bottlenecks
— debugging distributed applications

NetLogger

NetLogger Components Fﬁ\\l

* NetLogger Toolkit contains the following components:
— NetLogger message format
— NetLogger client library (C, C++, Java, Perl, Python)
— NetLogger visualization tools
— NetLogger host/network monitoring tools

* Source code and binaries are available at:
— http://www-didc.lbl.gov/NetLogger/

» Additional critical component for distributed applications:

— NTP (Network Time Protocol) or GPS host clock is
required to synchronize the clocks of all systems

NetLogger

.

Key Concepts

» NetLogger visualization tools are based on time
correlated and/or object correlated events.

* NetLogger client libraries include:
— precision timestamps (default = microsecond)

— ability for applications to specify an “object ID” for related
events, which allows the NetLogger visualization tools to
generate an object “lifeline”

End Processing

Begin Processing [

End Read I I

Event

Begin Read

Request data /

time

NetLogger

NetLogger Message Format T\l\\

* We are using the IETF-developed Universal Logger
Message (ULM) format:
« a list of “field=value” pairs
e required fields: DATE, HOST, PROG, and LVL
—DATE = YYYYMMDDHHSS.SSSSSS
—PROG: program name
—LVL is the severity level (Emergency, Alert, Error, Usage, etc.)
« followed by optional user defined fields
e see: http://www-didc.Ibl.gov/INetLogger/draft-abela-ulm-05.txt

* NetLogger adds this required fields:

¢ NL.EVNT, a unique identifier for the event being logged
—e.g.: SERVER_IN, VMSTAT_USER_TIME,
NETSTAT_RETRANSSEG

NetLogger

.

NetLogger Message Format T\'\J

» Sample NetLogger ULM event:

DATE=19980430133038. 055784 HOST=f o0o. | bl . gov
PROG=t est prog LVL=Usage NL. EVNT=SEND_DATA
SEND. SZ=49332

— This says program named testprog on host foo.lbl.gov
performed event named SEND_DATA, size = 49332
bytes, at the time given

* User-defined data elements (any number) are used to
store information about the logged event - for example:
» NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

¢ NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

NetLogger

When to use NetLogger coee) u‘il

* When you want to:

— do performance/bottleneck analysis on distributed
applications

— determine which hardware components to upgrade
to alleviate bottlenecks

— do real-time or post-mortem analysis of applications

— correlate application performance with system
information (ie: TCP retransmission's)

» works best with applications where you can follow a
specific item (data block, message, object) through the
system

NetLogger

When NOT to use NetLogger T\'\]

* Analyzing massively parallel programs (e.g.: MPI)

— Current visualization tools don’t scale beyond
tracking about 20 types of events at a time

* Analyzing many very short events

— system will become overwhelmed if too many
events

— we typically use NetLogger to monitor events that
take > .5 ms

— e.g: probably don’t want to use to instrument the
UNIX kernel

NetLogger

NetLogger AP -:;ﬁﬂ

* NetLogger Toolkit includes application libraries for
generating NetLogger messages
— Can send log messages to:
* file
* host/port (netlogd)
* syslogd
* memory, then one of the above

* C, C++, Java, Fortran, Perl, and Python APIs are
currently supported

NetLogger

netlogd -::ﬁpq

» Use netlogd to collect NetLogger messages at a central
host

— use to avoid the need to sort/merge several log files

from several places

Network 3

Y|

v |

Network 2

Network 1

netlogd

N J

NetLogger data

NetLogger

Logging to Memory ceeeeed] ;

* The NetLogger client library includes an option to buffer log
messages in memory:

— useful if monitoring bursts of events with a duration <1 ms
* Flushing of events to disk or network will occur:

— automatically when specified memory block full

— when calling NetLoggerFlush()

— when calling NetLoggerClose()

» Size of memory buffer specified by NL_MAX_BUFFER in

netlogger.h
— default = 10,000 messages (typical message size is 128
bytes)
NetLogger API :_\I\\J

e Only 6 simple calls:
— NetLoggerOpen()

e create NetLogger handle
— NetLoggerWrite()

e get timestamp, build NetLogger message, send to destination
— NetLoggerGTWrite()

e must pass in results of Unix gettimeofday () call
— NetLoggerFlush()

« flush any buffered message to destination

— NetLoggerSetLevel()

* set ULM severity level

— NetLoggerClose()
« destroy NetLogger handle

NetLogger

.

NetLogger Open Call oy u‘il

DEsELEY LAE

NLhandle *lp = NULL;
Ip = NetLoggerOpen(char *program_name, char *dest_url, int flags);

e program_name: name to be inserted into ULM “program” field
» dest_url: destination of log file; valid URLs formats include:

— file://pathffile

— X-netlog://host:port

— x-syslog://localhost
 flags: bitwise “or” of the following:

— NL_MEM: buffer in memory

— NL_ENV: destination must be specified by the NL_DEST_ENV
environment variable; NetLogger is off if this variable not found

NetLogger

.

NetLoggerOpen() shell =2

* Enable/Disable logging:
setenv NETLOGGER ON {true, on, yes, 1}: dologging
setenv NETLOGGER ON {fal se, off, no, 0}: do notdo logging

e Log Destination: set env NL_DEST_ENV | oggi ng desti nati on
Examples:
setenv NL_DEST_ENV file://tnp/netlog. | og
write log messages to file /tmp/netlog.log
setenv NL_DEST_ENV x- netlog://| oghost.| bl .gov
send log messages to netlogd on host loghost.Ibl.gov, default port
setenv NL_DEST_ENV x- netl og://Il oghost.| bl . gov: 6006
send log messages to netlogd on host loghost.lbl.gov, port 6006

e NL_DEST_ENV overrides the URL passed in via the NetLoggerOpen()
call.

NetLogger

Typical Use ceeeeed] ;

» Using the environment variables, application and middleware
developers don't have to worry about command line arguments
or middleware APIs to enable/disable logging.

« Example: middleware includes the following call:
Net Logger Open(“ gl obus”, NULL, NL_ENV);

— Default behavior: logging is off
— If user sets “NL_DEST_ENV” to a valid log destination, then logging
will be turned on
« Example: client includes the following call:
Net Logger Qpen(“ny_app”, “file://tnmp/nyapp.log”, 0);
— Default behavior: logging is on
— If user sets: NETLOGGER_ON = of f: Logging is disabled

NetLogger

.

NetLogger Write Call recceed]
gger Wr

» Creates and Writes the log event:

Net Logger Wite(nl, *“EVENT_NAME",
“EVENTI D=% F2=% F3=% F4=% 2f", id,
user _data, user_string, user float);

— timestamps are automatically done by library

— the “event name” field is required, all other fields are
optional

— this call is thread-safe: automatically does a mutex lock
around write call (compile time option)

* Example:

Net LoggerWite(nl, “HTTPD. START DI SK_READ’,
“HTTPD. FNAME=% HTTPD. HOST=%", f nane,
host nane) ;

NetLogger

Sample NetLogger Use coeeed] f

| p = Net Logger Open(prognane,
x-netlog:// 1 oghost.|bl.gov, 0);

whi l e (!done)
{

Net Logger Wite(l p, "EVENT_ START"
"TEST. S| ZE=%", si ze);

/* performthe task to be nonitored */
done = do_sonet hi ng(data, size);
Net Logger Wi te(l p,

"EVENT_END') ;
}

Net Logger Cl ose(| p);

NetLogger

NetLogger Event “Life Lines” TEI\J

End Processing

Begin Processing /]

End Read ’ I

Begin Read /
Request data / /

Event

time

NetLogger

Event ID

* In order to associate a group of events into a “lifeline”,
you must assign an event ID to each NetLogger event

e Sample Event Ids
— file name
— block ID
— frame ID
— user name
— host name
— combination of the above
— etc.

NetLogger

Sample NetLogger Use with

crreres ..‘1

I p = Net Logger Open(prognane, NULL, NL_ENV);
for (i=0; i< numblocks; i++) {
Net LoggerWite(lp, “START_READ’,
“BLOCK_| D=% BLOCK_SI ZE=%l", i, size);
read_bl ock(i);
Net LoggerWite(lp, “END_READ',

“BLOCK_| D=% BLOCK_ Sl ZE=%", i, size);
Net LoggerWite(lp, “START_PROCESS’,
“BLOCK_| D=% BLOCK_SI ZE=%", i, size);

process_bl ock(i);
Net Logger Wite(lp, “END_PROCESS",

“BLOCK_| D=% BLOCK_SI ZE=%l", i, size);
Net LoggerWite(lp, “START_SEND’,
“BLOCK_| D=% BLOCK_SI ZE=%l", i, size);

send_bl ock(i);
Net LoggerWite(lp, “END_SEND',
“BLOCK_| D=% BLOCK_SI ZE=%l", i, size);

}
Net Logger Cl ose(| p);

NetLogger

11

NetLogger Host/Network Tools T\]\\l

* Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format

— netstat (TCP retransmissions, etc.)
— vmstat (system load, available memory, etc.)
— iostat (disk activity)

— ping

* These tools have been wrapped with Perl programs which:
— parse the output of the system utility
— build NetLogger messages containing the results

NetLogger

Sample NetLogger System et

« Example: nl_vmstat -t 60 -d 5000 -m 2 logger.Ibl.gov

— Perl program will exec vmstat every 5 seconds for 1
hour, and send the results to netlogd on host
logger.Ibl.gov

— Generates the following information:
e CPU usage by User
e CPU usage by System

* NetLogger Messages:
DATE=19990706125055. 891620 HOST=port noy. | bl . gov
PROG=nl _vmstat LVL=Usage NL.EVNT=VMSTAT_USER TI ME
VNB. VAL=9
DATE=19990706125055. 891112 HOST=port noy. | bl . gov

PROG=nl _vmstat LVL=Usage NL. EVNT=VMSTAT_SYS TI ME
VMNB. VAL=5

NetLogger

12

.

NetLoggerized tcpdump T\]\\l

* Precise real-time monitoring of TCP events on a per stream bases
— TCP retransmits
— TCP window size

* Example:
— tcpdump -Atcp and host piggy.ittc.ukans.edu and port 23

» Generates the following NetLogger data:

— DATE=20000419171039.78654 HOST=piggy.ittc.ukans.edu PROG=tcpdump
LVL=ErrorNL.EVNT=TCPD_REXSEG SN=145
SRC_HOST=falcon.cc.ukans.edu SRC_PORT=23
DST_HOST=piggy.ittc.ukans.edu DST_PORT=2800

e http://www.ittc.ukans.edu/projects/enable/tcpdump

NetLogger

NetLogger Visualization Tools T\'\J

» Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems

— this is provided by nlv (NetLogger Visualization)

* nlv functionality:
— can display several types of NetLogger events at once

— user configurable: which events to plot, and the type of
plot to draw (lifeline, load-line, or point)

— play, pause, rewind, slow motion, zoom in/out, and so
on

— nlv can be run post-mortem or in real-time

* real-time mode done by reading the output of netlogd as it is
being written

NetLogger

13

NLV Graph Types

* nlv supports graphing of “points”, load-lines, and
lifelines

event | point

event | N o load-line

evert E /
aevent D I I lifeline
event C
event B
event A "
me
NetLogger

NLV Screenshot H

—
. M Log par Wiausir=ion Menu bar
Tltle (T Th& W s~
e J
TV TLE_FED -] =
T_FENIERT_SENT w o x BT

P EESTART_FEAD]

AR FECEE | H =k L .
< [P SR weaTe | | ! I——T—*ﬁ‘ 1 Sc_ale for load-line/
Events 5 BFEE EHD_READ ', | 4| ;\ﬁ\pomts
| i

CFs_EE Y 4

e LF Zoom box
D TR] 1 1 { -
AP _ENT | |
k FRETAT_LISER T oL . .
VAT BT T e] LasrrTiT | Time axis
Max window sige 2 o s /Legend

s Playback speed
|~ Zoom-box actions
Playback controls

[T
line s |
You ar/ o W [Zoom window

here Seatunz Pane i controls

NetLogger

14

.

NLV Configuration

NLV is very flexible, with many options settable in the
configuration file.

Format:
eventset +/-eventset_nane {

{ type <line, point,|oad> }

{id{ list of UUMfield names used to determ ne which
Net Logger nessages get grouped into the sane graph
primtive } }

{ group { list of UMTfield nanes which will be napped to
the same color } }

{ val field_name mn_val max_val }

{ annotate { list of field nanmes to display in with annotate
option } }

{ events { list of all event IDs in this lifeline} }

}
Each nlv graph object needs to be defined by an “eventset”

Events and event-sets both use "+" and "-" to indicate default
(i.e. on startup) visibility

NetLogger

.

Example NLV Configuration T\l\\l

display vnstat info as a “loadline’

event set +VMSTAT {

{ type load }

|l oadl i ne constructed from nessages with the same HOST and NL. EVNT
{ id { HOST NL.EVNT } }

nessages with the same HOST get the sane col or

{ group HOCST }

#list of NL.EVNT values in this set_

{ events { +VMBTAT_SYS Tl ME +VMSTAT_USER TI ME } }

}

display netstat TCP retransmits as a “point”

event set +NETSTAT {

{ type point }

ignore val ues outside the range 0 to 999

{ val NS.VAL 0.0 999.0 }

point constructed from nessages fromthe same HOST and PROG
{ 1d { HOST PROG} }

nmessages with the same HOST get the same col or

{ group HOST }

{ events { +NETSTAT_RETRANSSEGS } }

}

NetLogger

15

display server data as a “lifeline”
event set +SERVER READ ({

{ type line }

l'ifeline constructed from messages fromthe same client
and server

id { CLIENT_HOST DPSS. SERV } }

nessages with the sane DPSS. SERV get the sane col or
group DPSS. SERV }

~ s o~ 3

events {
+APP_SENT
+DPSS_SERV_I N
+DPSS_START_READ
+DPSS_END READ
+DPSS_START_WRI TE
+APP_RECEI VE }

Example NLV Configuration T\|\\|

NetLogger

How to Instrument Your e X
—— Application

* You'll probably want to add a NetLogger event to the
following places in your distributed application:

— before and after all disk I/O
— before and after all network 1/0
— entering and leaving each distributed component

— before and after any significant computation
e e.g.: an FFT operation

— before and after any significant graphics call
* e.g.: certain CPU intensive OpenGL calls

* This is usually an iterative process

— add more NetLogger events as you zero in on the
bottleneck

NetLogger

16
1

Does NetLogger affect

application performance? i

* Only if you use it incorrectly or log too much
* There are several things to be careful of when doing this
type of monitoring:
— If logging to disk, don’t log to a nfs mounted disk
* best to log to /tmp, which may actually be RAM (Solaris)

— Probably don’t want to send log messages to a slow
(i.e.: 10BT) or congested network, as you'll just make
it worse

* log to a local file instead
» Sample NetLoggerWrite Performance: 100000 calls/sec

— can make 1000 NetLoggerWrite calls / sec and only

effect your application by 1%

NetLogger

NetLogger Case Studies

NetLogger

17

Example: HPSS Storage Manager e

* NetLogger was used to test and verify the results of a
Storage Access Coordination System (STACS) by
LBNL’s Data Management Group

* STACS is designed to optimize the use of a disk
cache with an HPSS Mass Storage system, and tries
to minimize tape mount requests by clustering related
data on the same tape

* NetLogger was used to look at:
— per-query latencies

— to show that subsequent fetches of spatially
clustered data "hit" in the cache.

* (http://gizmo.lbl.gov/sm/)

NetLogger

STACS Instrumentation Points T\'\J

Client Monitoring Points:
— A) request arrives at HPSS
B) start transfer from tape
C) tape transfer finished
D) file available to client

E) file retrieved by client
Cach HPSS > : :
ache 'E F) file released by client

Tape Storage

NetLogger

S

NLV for STACS: Tracking File ’\]

File Display Bookmarks Help

MetLogger Visualization

s

B_BEQUEST_ABRIV —!

mnnnnn znnnnnn 3000000
time({ms)

s Status: Paus _I _I _1 _I _I J 2 00

V Window €s) o nnalgsis
I | | | | 3570.0 ¥ Stop on EOF
0.0 37 W Skip to data

Reguests i _“\']

NetLogger

Tracking Files and System Performance @ sreeess

Wme Options

]

NetLogger

19
1

Example: Parallel Data Block ,_\]

Server

» The Distributed Parallel Storage Server (DPSS)
— provides high-speed parallel access to remote data

— Unique features of the DPSS:

* On a high-speed network, can actually access remote
data faster that from a local disk

—70 MB/sec (DPSS) vs 22 MB/sec (local disk)

* Only need to send parts of the file currently required over
the network

—e.g.: client may only need 100 MB from a 2 GB data set
—analogous to http model
* NetLogger was used for performance tuning and
debugging of the DPSS

NetLogger

.

DPSS Cache Architecture T\'\\J

data blocks

Client Application

Parallel

data blocks
DPSS Server

[= H Parallel
——]]
Disks

DPSS Server

Logical Block data blocks

Requests

D
Parallel
Disks

DPSS Master

logical to physical
block lookup
access control
load balancing

DPSS Server

& &

NetLogger

20
2

NetLogger Results for the DPSS i:]\

F: tixa for 3 hiocks {n pol from are smvar jureand sonarr ane soonr dhae
wiber b BiF SpRoetion fesd e Dwlee ik marel
TP vt ————— tatel: 34 e, wep D0 e -
e B MR
Fer @ve o aey Rt
e i Ty
Al el [""f"/’;_/,,i-’r
.
Hart_writn
wile e
end_resd
! vk read
2 aa u_raad
imﬂdqﬂm@ |
= sV R :
met transit ||
mafE_ ant 1
.rl.' € 30 Bla ik aviesgs tms Lo walla y
manie il 'I-l'. - ok to asteor N e H
mmaxbe_in .||'-I BAS ' v el
| f .
' B 3 black vy trspim o i J'| bighalie g VML gy
reel transil II-" -— N 5 -n-| i f “phoer” o e & obt M)
i e Ll
app_send .: —— 1 —T—T T e
L i E tuss ta atied 20 Bleaks Mo fas daks 1 L2 L
— febitl 2 me, wep ALS mr —
! B M (83,7 M) , Time [ms)
NetLogger

NetLogger Results for the DPSS =

WPP_RECETVE |-
0PSS_START_URTTE ||
DPSS_END_READ |-~
OPSS_START READ -~
OPSS_SERYV_IN [+

OPSS_MASTER_OUT :

DPSE_MASTER_IN [~--

2.34 2.36 2.38 2.4 242 2.44 2.46 2.458

— dpszd . 1hl . gow dozzZ, 1hl.gow dpsal.lhl.gow
E—

NetLogger

21

NetLogger Results for the DPSS | > .
over a WAN

7
b bl s B “lecmr Dokl o Shmpek”

e e Ty | g
TCP refrans . / }
apjp Peceive . . _
/) _,---_"__:FF—:'- g

el read

sart read

server In

mARber ot
|
masier in
wpp wend
n 1.0 20 ERL 4,0 E 000
time (s}
NetLogger

DPSS Performance: Used NetLogger |~~~ .

Compute Cluster

Storage Cluster

(DPSS) (8 nodes)

Total Throughput (single dataset to a single cluster application):
570 Mbits/sec (71 MB/sec) on 32 data streams (17 Mbits/sec/stream)

1000 BT 1000 BT
i—OC-lz _.—00-48—;

Berkeley Lab: NTON Oakland
-75TB, 4server poP Sandia Livermore Lab
DPSS Linux Cluster (CPlant)
NetLogger

22

Example: NLV of DPSS with a ,_\]
HENP client _ ‘“\]

[Benmeicr Lau]
e D e -y
Fatt agger Whaualialian
b - ! ..-.- e —
T _srerasr — d
T g - -
EF AT —
v r. |
i i
e e e
o
b,
= % 3 =i surs; Pt
wragmn)
L : Bl ¢
Times MWindow {mmk lﬁ |&|jm 1 ecif]
ey | P o
afa]v] s Jem——t :
NetLogger

Example: Babar data analysis: 2 F\I
_ niactivity B ___\-]

Run-10462-3-33-12-31 Modes 50 and 125 only

| P e T e
HODE=IES
| -__Hflfi:ﬂ'ﬂa i HFEsicsEvanls_ramiF5AD_shilt e _created By _oWner_nmoess:
serern_gxi — 2l

W
o
. I'If{ILllL_ﬂu-—-”"“”jﬁ’ L~

“ H “
Uy}

NetLogger

Example: Matisse Project coceend]

=

Compute Cluster
B nades)

1080 BT

151 East (Arington, WA)
Liruee Cluster

NetLogger

Example: Combined Host and

—Application Monitoring ____

TCPD_RETRANSMITS

MPLAY_END_PUT_IMAGE

MPLAY_START_PUT_IMAGE

MPLAY_END_READ_FRAME

MPLAY_START_READ_FRAME

)

VMSTAT_USER_TIME

VMSTAT_SYS_TIME =

VMSTAT_FREE_MEMORY

Time (seconds) 310

dpss5.1bl.gov
dpss4.lbl.gov

311 312 313 314 315 316 317 318
mems.cairn.net —— dpss2.1bl.gov
dpss3.1bl.gov
NetLogger

24
2

Example: NetLogger of ncftp | —=, .
client e f

* ncftp client on a

10BT ethernet
° ncftp Cllent ona e ‘ | ” ‘H“WW “ !} ” “
1000BT ethernet PO Il S Bl b

NetLogger

Current/Future NetLogger Work F\|\\J

* Binary format (faster!)
¢ XML format (slower!!)
* Publish/Subscribe API

— Producer X
+ NetLoggerPublish(“MONITORING_EVENT_NAME”, ...)
— Consumer Y
+ NetLoggerSubscribe(X, “MONITORING_EVENT_NAME”, ..)

NetLogger

25
2!

Getting NetLogger

* Source code and binaries are available at:
— http://www-didc.lbl.gov/NetLogger

* Client libraries run on all Unix platforms

» Solaris, Linux, and Irix versions of nlv are currently

supported

NetLogger

For More Information

Email:bltierney@Ibl.gov

http://www-didc.lbl.gov/NetLogger/
— download NetLogger components
— tutorial
— user guide

http://www-didc.Ibl.gov/tcp-wan.html
— links to all network tools mentioned here
— sample TCP buffer tuning code, etc.,

NetLogger

26
2l

